Heteroclinic Solutions to an Asymptotically Autonomous Second-Order Equation

نویسنده

  • GREGORY S. SPRADLIN
چکیده

We study the differential equation ẍ(t) = a(t)V ′(x(t)), where V is a double-well potential with minima at x = ±1 and a(t) → l > 0 as |t| → ∞. It is proven that under certain additional assumptions on a, there exists a heteroclinic solution x to the differential equation with x(t)→ −1 as t→ −∞ and x(t) → 1 as t → ∞. The assumptions allow l − a(t) to change sign for arbitrarily large values of |t|, and do not restrict the decay rate of |l− a(t)| as |t| → ∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

SOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.

Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Heteroclinic Orbits for a Higher Order Phase Transition Problem

A standard model for one-dimensional phase transitions is the secondorder semilinear equation with bistable nonlinearity, where one seeks a solution which connects the two stable values. From an Ising-like model but which includes long-range interaction, one is led to consider the equation where the second-order operator is replaced by one of arbitrarily high order. Others have found the desire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010